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Abstract

We prove packing and counting theorems for arbitrarily oriented Hamilton cycles in D(n, p)
for nearly optimal p (up to a logc n factor). In particular, we show that given t = (1 − o(1))np
Hamilton cycles C1, . . . , Ct, each of which is oriented arbitrarily, a digraph D ∼ D(n, p) w.h.p.
contains edge disjoint copies of C1, . . . , Ct, provided p = ω(log3 n/n). We also show that given an
arbitrarily oriented n-vertex cycle C, a random digraph D ∼ D(n, p) w.h.p. contains (1±o(1))n!pn

copies of C, provided p ≥ log1+o(1) n/n.

1 Introduction

A Hamilton cycle in a graph is a cycle passing through every vertex of the graph exactly once,

and a graph is Hamiltonian if it contains a Hamilton cycle. For digraphs, a Hamilton cycle is a cycle

passing through every vertex of the graph exactly once, with edges oriented cyclically. Hamiltonicity

is one of the most central notions in graph theory, and has been intensively studied by numerous

researchers in recent decades.

One of the first, and probably the most celebrated, sufficient conditions for Hamiltonicity in

graphs was established by Dirac [6] in 1952. He proved that every graph on n vertices, n ≥ 3,

with minimum degree at least n/2 is Hamiltonian. Ghouila-Houri [13] proved an analogue of Dirac’s

theorem for digraphs, showing that any digraph of minimum semi-degree at least n/2 contains an

oriented Hamilton cycle (the semi-degree of a digraph G, denoted δ0(G), is the minimum of all the

in- and out-degrees of vertices of G).

Instead of studying “consistently oriented” Hamilton cycles in digraphs, it is natural to consider

Hamilton cycles with arbitrary orientations. This problem goes back to the 80s where Thomason

[23] showed that each regular tournament contains every orientation of a Hamilton cycle. Later on,

Häggkvist and Thomason [15] showed an approximate analog of the result of Ghouila-Houri [13]

while proving that δ0(G) ≥ n/2+n5/6 is sufficient to guarantee every orientation of a Hamilton cycle

appears in G. Very recently, this problem has been settled completely by DeBiasio, Kühn, Molla,

Osthus and Taylor [4]. They showed that δ0(G) ≥ n/2 is enough for all cases other than an anti-

directed Hamilton cycle, where for the latter, Debiaso and Molla showed in [5] that δ0(G) ≥ n/2 + 1

is enough (an anti-directed Hamilton cycle is a cycle with no two consecutive edges having the same

orientation).
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In this paper we restrict our attention to the sparse setting, that is, to random directed graphs.

Let D(n, p) be the probability space consisting of all directed graphs on vertex set [n] in which each

possible arc is added with probability p independently at random.

One of the first results regarding Hamilton cycles in random directed graphs was obtained by

McDiarmid in [21]. He showed (among other things) by using an elegant coupling argument that

Pr (G ∼ G(n, p) is Hamiltonian) ≤ Pr (D ∼ D(n, p) is Hamiltonian) .

Combined with the result of Bollobás [2] it follows that a typical D ∼ D(n, p) is Hamiltonian for

p ≥ lnn+ln lnn+ω(1)
n . Frieze [11] later proved that p = lnn+ω(1)

n is the correct threshold for the

appearance of a Hamilton cycle in D ∼ D(n, p).

While Frieze’s result gives a better bound than McDiarmid’s coupling argument, the former is

much more flexible (for some further applications, see [7]). For example, given an arbitrary oriented

Hamilton cycle C, it follows immediately from McDiarmid’s proof that

Pr (G ∼ G(n, p) is Hamiltonian) ≤ Pr (D ∼ D(n, p) contains a copy of C) .

In contrast, the result of Frieze is tailored to “consistently oriented” Hamilton cycles and gives

no improvement on the obtained bound of p = lnn+ln lnn+ω(1)
n for general orientations. It may be

interesting to find the exact threshold for the appearance of an arbitrary oriented Hamilton cycle

and we conjecture the following:

Conjecture 1.1. Let C be a Hamilton cycle oriented arbitrarily, then a digraph D ∼ D(n, p) w.h.p.

contains a copy of C, provided that p = lnn+ω(1)
n .

Another recent result worth mentioning was given by Ferber, Nenadov, Peter, Noever and Škoric

in [9]. Here it was proven using the “absorption method” that D ∼ D(n, p) is w.h.p. Hamiltonian

even if an adversary deletes roughly one half of the in- and out-degrees of all the vertices, provided

that p ≥ logC(n)/n for some constant C > 0.

Here we deal with the problems of counting and packing arbitrary oriented Hamilton cycles in

D ∼ D(n, p), for edge-densities p ≥ logC(n)/n. The analogous problems regarding the “consistently

oriented” Hamilton cycles has been recently treated by Kronenberg and the authors in [8]. However,

the proof method there is inapplicable to the arbitrary oriented case.

Enhancing a recent “online sprinkling” technique introduced by Ferber and Vu [10], we manage

to tackle these two problems. Our first theorem gives an asymptotically optimal result for packing

arbitrarily oriented Hamilton cycles in D ∼ D(n, p).

Theorem 1.2. Let ε > 0 and p(n) ∈ (0, 1]. Let t = (1 − ε)np and suppose that C1, . . . , Ct are

n-vertex cycles with arbitrary orientations. Then w.h.p. D ∼ D(n, p) contains edge disjoint copies

of C1, . . . , Ct, provided p� log3 n/n.

Our second result shows that given an arbitrarily oriented Hamilton cycle C, w.h.p. D ∼ D(n, p)

contains the “correct” number of copies of C.

Theorem 1.3. Suppose that C is an arbitrarily oriented n-vertex cycle. Then w.h.p. a digraph

D ∼ D(n, p) contains (1± o(1))nn!pn distinct copies of C, provided p� (log log n) log n/n.

Before closing the introduction, let us mention that packing and counting Hamilton cycles in

the undirected setting has been extensively studied by numerous researchers. In fact, both of these
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problems are now completely resolved (see [14, 18, 19, 20] and their references). In particular, as

conjectured by Frieze and Krivelevich in [12], it is now known that for all p, a typical G ∼ G(n, p)

contains bδ(G)/2c edge-disjoint Hamilton cycles, which is clearly best possible (for a summary of all

previous work we refer the reader to [18]). Note that in this paper we only find (1−ε)δ0(D(n, p)) edge-

disjoint, arbitrary oriented Hamilton cycles, and only for p ≥ logC /n. Therefore, it would be very

interesting to obtain analogous statement for the directed setting, even if only for the ‘consistently

oriented’ Hamilton cycle.

The main difficulty when working in the directed case, is that the so called Posá rotation-extension

technique (see [22]) does not work in its simplest form and therefore one should find more creative

ways for generating Hamilton cycles. This will be discussed in more details in later sections.

Notation: Given a directed graph (digraph) D, we write V (D) for the vertex set of D and E(D) for

the edge set D. Given v ∈ V (D) we write N+(v) = {u ∈ V (D) : −→vu ∈ E(D)}, the out-neighbourhood

of v, and let d+(v) = |N+(v)|, the outdegree of v in D. Similarly define N−(v) and d−(v). Let δ0(D)

denote the semi-degree of D, given by δ0(D) = minv∈V (D),∗∈{+,−} d
∗(v). Given n ∈ N, let Dn denote

the complete directed graph (or complete digraph) on n vertices, consisting of all possible n(n − 1)

directed edges.

A path P of length k is a (k+ 1)-vertex digraph with k edges, given by P := v0v1 . . . vk where for

each i ∈ [0, k − 1] either −−−→vivi+1 or ←−−−vivi+1 is an edge of P . Given σ : [0, k − 1]→ {+,−}, we say that

P is a σ-path, if for all i ∈ [0, k− 1] the edge −−−→vivi+1 lies in P whenever σ(i) = +, and ←−−−vivi+1 lies in P

whenever σ(i) = −. In this case we write σ(P ) = σ. In a similar way, for σ : [0, k − 1] → {+,−} a

σ-cycle C := v1 . . . vkv1 is a k-vertex digraph with k edges, each of the form −−−→vivi+1 or ←−−−vivi+1, where

each appears according to the sign of σ(i). Given a cycle C and a subpath P of C, let P c denote the

path induced by the edges of C which do not lie in P , called the complement of P in C.

Given a digraph D, we write D(D, p) for the probability space of random subdigraphs of D

obtained by including each edge of D independently with probability p. For a graph G, we write

G(G, p) for the analogous distribution on subgraphs of G. In the special case when D = Dn we

simply write D(n, p). Similarly for graphs we write G(n, p). Given a sequence of n-vertex digraphs

{Dn} or n-vertex graphs {Gn} we will say that an event holds with high probability (w.h.p.) for

D(Dn, p) or G(Gn, p) if the event holds with probability at least 1− ε(n), where ε(n) is some function

tending to 0 with n. Occasionally this will be abbreviated to say D(D, p) holds with high probability

for an n-vertex digraph D when the sequence is implicit. Similarly we say with very high probability

(w.v.h.p.) to mean with probability 1− n−ω(1).

2 Tools

2.1 Chernoff’s inequalities

Throughout the paper we will make extensive use of the following well-known bound on the upper

and lower tails of the Binomial distribution, due to Chernoff (see for example Appendix A in [1]).

Lemma 2.1 (Chernoff’s inequality). Let X ∼ Bin(n, p) and let E(X) = µ. Then

• P (X < (1− a)µ) < e−a
2µ/2 for every a > 0;

• P (X > (1 + a)µ) < e−a
2µ/3 for every 0 < a < 3/2.

We also make use of the following simple lemma.
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Lemma 2.2. Let X ∼ Bin(n, p). Then, for every k we have

Pr (X ≥ k) ≤
(enp
k

)k
.

Proof. Clearly,

Pr (X ≥ k) ≤
(
n

k

)
pk ≤

(enp
k

)k
as desired.

2.2 A concentration inequality

A filtration F0 ⊂ F1 ⊂ · · · ⊂ FN of a measurable space Ω is an increasing sequence of σ-algebras

of Ω. A sequence of random variables 0 ≡ X0, X1, . . . , XN is said to be a submartingale with respect

to the filtration {Fi}i∈[N ] if each Xi is Fi-measurable and

E(Xi|Fi−1) ≤ Xi−1 for all i ∈ [N ].

The next result gives a concentration bound for submartingales (see Theorem 7.3 in the survey of

Chung and Lu [3], taking φi = ai = 0).

Theorem 2.3. Suppose 0 ≡ X0, X1, . . . , XN is a submartingale with respect to the filtration {Fi}i∈[N ]

and satisfies

Var(Xi|Fi−1) ≤ σ; and Xi − E(Xi|Fi−1) ≤M.

Then P(XN ≥ m) ≤ e−m2/2(Nσ+Mm/3).

We will make use of the following simple corollary.

Corollary 2.4. Suppose that A1, . . . , AN are a sequence of events in a probability space (Ω,P).

Suppose that for all i ∈ [N ] we have P(Ai|I1, . . . , Ii−1) ≤ q, where Ij is the indicator random variable

for the event Aj. Then letting Em denote the event that at least qN + m of the events A1, . . . , AN
occur, we have P(Em) ≤ e−m2/2(Nq+m/3).

Proof. Let Fi be the σ-algebra generated by the sets {A1, . . . , Ai} for each i ∈ [N ], so that {Fi}i∈[N ]

is a filtration. Set Xi :=
∑

j≤i
(
Ii − q

)
for all i ∈ [N ], and X0 ≡ 0. Clearly Xi is Fi-measurable for

all i ∈ [N ] and

E(Xi|Fi−1) = E(Ii|Fi−1)− q +Xi−1 ≤ Xi−1 for all i ∈ [N ],

showing that X0, . . . , XN is a submartingale with respect to {Fi}i∈[N ]. We also have

Var(Xi|Fi−1) = Var(Ii|Fi−1) ≤ q and Xi − E(Xi|Fi−1) = Ii − E(Ii|Fi−1) ≤ 1 for all i ∈ [N ].

Taking M = 1 and σ = q, Theorem 2.3 gives

P
(
Em) = P(XN > m) ≤ e−m2/2(Nq+m/3),

as required.
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2.3 Completing paths into a Hamilton cycle

The following lemma is the main result of this subsection and will be used to complete paths into

Hamilton cycles in D ∼ D(n, p).

Lemma 2.5. Let σ ∈ {+,−}n−1. Suppose that G is an n-vertex digraph with δ0(G) ≥
(

1− 1
2 logn

)
n,

with n ≥ n0. Then with probability 1 − n−ω(1) a digraph D ∼ D(G, p) contains a σ-path Q between

any two distinct vertices in D, provided p = ω(log n/n).

In order to prove Lemma 2.5 we make use of a result due to Hefetz, Krivelevich and Szábo [16]

and the coupling idea of McDiarmid [21]. Given a graph G on n vertices, let us consider the following

two properties (obtained from the ones in [16] by choosing d = log0.1 n):

(P1) For every S ⊂ V (G) with |S| ≤ n
logn we have |N(S) \ S| ≥ |S| log0.1 n;

(P2) There is an edge between any two disjoint subsets A,B ⊆ V (G) such that |A|, |B| ≥ n log logn
logn .

The following theorem is proven in [16].

Theorem 2.6. Every sufficiently large graph G satisfying (P1) and (P2) is Hamiltonian connected.

That is, for every u, v ∈ V (G), there is a Hamiltonian path in G with u, v as its endpoints.

Using Theorem 2.6 we now prove that given a graph G with high minimum degree, a random

subgraph of it is Hamiltonian connected with very high probability.

Lemma 2.7. Let G be a graph on n ≥ n0 vertices with δ(G) ≥ n− n/ log n. Then, with probability

1− n−ω(1) a graph H ∼ G(G, p) is Hamiltonian connected, provided that p = ω(log n/n).

Proof. By Theorem 2.6 it is enough to show that w.v.h.p. H satisfies both (P1) and (P2). Let

us start with (P1). Note that every vertex v ∈ V (G) has E[dH(v)] = (1 − o(1))np. Therefore, by

Lemma 2.1 and the union bound we obtain that the probability that there exists a vertex of degree

not in (1± 1
2)np is at most ne−Θ(np) = n−ω(1). Thus w.v.h.p. we find that for all v ∈ V (G) we have

dH(v) ≥ np/2� log n, and in particular (P1) holds for all |S| ≤ log0.9 n.

We now bound the probability that (P1) fails for some set S ⊆ V (H) of size s ∈ [log0.9 n, n/ log n],

i.e. that |NH(S)| < s log0.1 n. If this is the case, T = S ∪N(S) is a subset with t = |T | ≤ 2s log0.1 n

containing at least (
∑

v∈S dH(v))/2 ≥ snp/3 ≥ tnp/6 log0.1 n edges. However, any X ⊆ V (H)

satisfies E[eH(X)] ≤ |X|2p/2. By Lemma 2.2 and the union bound we obtain that the probability

for having such a set of size at most 2(n/ log n) log0.1 n ≤ n/ log0.8 n is at most∑
2 logn≤t≤n/ log0.8 n

(
n

t

)(
et2p/2

tnp/6 log0.1 n

)snp/3
≤

∑
2 logn≤t≤n/ log0.8 n

(en
t

)t(10t log0.1(n)

n

)s logn

≤
∑

2 logn≤t≤n/ log0.8 n

(
30 log0.1(n)

)s logn
(t/n)s logn−t

≤ n(log0.2 n)s logn(log−0.8 n)s logn/2 = n−ω(1).

To prove (P2), it is enough to show that the probability for having two subsets A,B of size exactly

n log logn/ log n with e(A,B) = 0 is n−ω(1). Indeed, this probability is upper bounded by(
n

n log log n/ log n

)2

(1− p)(1−o(1))
(

n log logn
logn

)2
≤
(
e log n

log logn

) 2n log logn
logn

e
−(1−o(1))

(
n log logn

logn

)2
p

= n−ω(1).
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This completes the proof of the lemma.

We are now ready to prove Lemma 2.5, using a beautiful coupling idea of McDiarmid [21].

Proof of Lemma 2.5. Let G be a digraph with δ0(G) ≥ n − n/2 log n. Delete edges of G which do

not also appear with the opposite orientation in G, i.e. delete −→uv ∈ E(G) if −→vu /∈ E(G). Abusing

notation, let G denote the resulting digraph and note that δ0(G) ≥ n − n/ log n. We also let G′

denote the underlying graph of G, with uv ∈ E(G′) if and only if −→uv and −→vw ∈ E(G). Also let

t = |E(G′)|.
To prove the lemma let us fix an arbitrary ordering of the (undirected) edges of E(G′), say

e1, . . . , et, where ej = {uj , vj} for all j ∈ [t]. For each i ∈ [0, t], consider the following random process

to generate a subdigraph Γi of G. Toss t+ i independent Bernoulli coins, Ce11 , C
e1
2 , . . . , C

ei
1 , C

ei
2 and

Dei+1 , . . . , Det , each of which appears as heads with probability p. Then construct Γi according to

the following rule

• For j ∈ [i], adjoin −−→ujvj to Γi if and only if C
ej
1 appears as heads;

• For j ∈ [i], adjoin −−→vjuj to Γi if and only if C
ej
2 appears as heads;

• For j ∈ [i+ 1, t] adjoin both −−→ujvj and −−→vjuj to Γi if and only if Dej appears as heads.

Let Di denote the resulting distribution on the subdigraphs of G.

Now let us fix two distinct vertices u, v ∈ V (G) and σ ∈ {+,−}n−1. Given a random subdigraph

Γ of G let E(Γ, u, v) denote the event that ‘Γ contains a σ-path starting at u and ending at v’. The

key inequality in our proof is that, for all i ∈ [t],

Pr
Γi∼Di

(E(Γi, u, v)) ≥ Pr
Γi−1∼Di−1

(E(Γi−1, u, v)) . (1)

In particular, by telescoping these inequalities, this gives

Pr
D∼D(G,p)

(E(D,u, v)) = Pr
Γt∼Dt

(E(Γt, u, v)) ≥ Pr
Γ0∼D0

(E(Γ0, u, v)) . (2)

The equality here holds since Dt is exactly the distribution D(G, p). However, to generate a random

digraph Γ according to D0 we simply select a random (undirected) subgraph H of G′ and let Γ

consist of all the directed edges corresponding to edges in H. In particular, E(Γ, u, v) occurs if and

only if H has a Hamilton path from u to v. As the minimum degree of G′ is at least n − n/ log n

and p = ω(log n/n), by Lemma 2.7 we have PrΓ0∼D0 (E(Γ0, u, v)) = 1− n−ω(1). Combined with (2),

by the union bound, this gives PrD∼D(G,p)(∩u,vE(D,u, v)) ≥ 1− n2n−ω(1) = 1− n−ω(1), as desired.

It remains to prove (1). To see this, note that we can couple random digraphs generated via

Di−1 and Di. Indeed, we can use the same coins to generate the directed edges corresponding to

e1, . . . , ei−1, ei+1, . . . , et in both Γi−1 and Γi and call the resulting subdigraph Γ̃. Then use Dei to

finish generating Γi−1 and Cei1 and Cei2 to finish generating Γi. After exposing Γ̃, there are three

scenarios:

(a) Γ̃ contains a σ-path from u to v not involving ei, or

(b) Γ̃ does not contain such a path even if we add both directions of ei, or
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(c) if we add some (possibly either) orientation of ei to Γ̃ it contains a σ-path from u to v, but does

not otherwise.

Note that in (a) and (b) there is nothing to prove, as Γi contains the required σ-path if and only

if Γi−1 does. In case (c) Dei must appear as heads for Γi−1 to have the desired path, which occurs

with probability p (conditional on Γ̃). However, it is clear that Γi contains a σ-path from u to v with

at least this probability (perhaps more if both −−→uivi and −−→viui guarantee a σ-path).

3 Packing arbitrarily oriented Hamilton cycles in D(n, p)

In this section we prove Theorem 1.2. The proof naturally splits into two pieces. In the first

piece, which appears in the next subsection, we will describe and analyse a simple randomized

embedding algorithm to generate long paths of some fixed orientation. Then, in subsection 3.2 by

repeatedly running this embedding algorithm in D(n, p) we will find a large subpath from each cycle

Ci. Combined with an additional argument to close each of these paths to a cycle, this will prove

Theorem 1.2.

3.1 A randomized algorithm for embedding oriented paths

Let D be an n-vertex digraph with δ0(D) ≥ n −∆. Also let P = v1 · · · v` be a σ-path, for some

arbitrary σ : [`− 1]→ {+,−}. Our aim in this section is to describe a randomized algorithm which

w.h.p. finds a copy Q := x1 · · ·x` of P in D over ` rounds. Let us fix a parameter pex, with pex � p.

Throughout the algorithm, whenever we ‘expose an edge’, we mean that we toss a biased coin with

heads probability pex, then regard the edge as present if the coin comes up heads (and indeterminate

otherwise).

Path embedding algorithm:

1. To begin, select a vertex x1 ∈ V (D) uniformly at random and set Q1 = x1.

2. For 1 ≤ i ≤ `− 1: suppose we are in round i and that we have now found Qi = x1 · · ·xi, and

aim to extend it to Qi+1 by finding xi+1. Let Ri = V (D) \ V (Qi) and select an ordering of Ri
uniformly at random, say y1, . . . , yn−i.

3. To find xi+1 proceed as follows. First expose xiy1 with an orientation corresponding to σ(i),

with probability pex. If this pair is exposed as an edge and is an edge of D, set xi+1 = y1

and Qi+1 = Qixi+1. Otherwise expose xiy2 with an orientation corresponding to σ(i), with

probability pex. Again, if the exposed pair appears as an edge and is an edge of D, set xi+1 = y2

and Qi+1 = Qixi+1. Continue with this process until we either find xi+1 and Qi+1, or run out

of vertices in Ri. If this second case occurs, terminate the algorithm and declare a failure. If

there is no failure and i < `− 1 return to 2. for round i+ 1. Otherwise, proceed to 4.

4. Output Q := Q`.

To analyze the algorithm, we will be interested in the following events:

F = “the algorithm fails”;

E−→uv = “the edge −→uv is exposed during the algorithm”;
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Au,v = “{u, v} ∩
(
V (Q) \ {x1, x`}

)
= ∅”.

The following lemma collects a number of key properties of this embedding process.

Lemma 3.1. Let D be a digraph with δ0(D) ≥ n−∆ and let P be a path of length `. Suppose pex

and ` satisfy log n/(n − ` − ∆) � pex � min
{ (n−`)2

n2∆
, 1

(n∆)1/2

}
. Then running the path embedding

algorithm with pex to find a copy of P in D, we have:

(i) Pr (F ) = o
(
n−2

)
.

(ii) Pr (E−→uv) ≤
1+o(1)
npex

for every pair {u, v} ∈
(
V (D)

2

)
.

(iii) Pr (Au,v) ≤ (1 + o(1))
(
n−`
n

)2
for every pair {u, v} ∈

(
V (D)

2

)
.

Proof. We first prove (i). Note that the algorithm only ends in failure if for some i ∈ [` − 1] edges

of orientation σ(i) in E(D) between xi and all vertices of Ri were exposed, but none appeared as an

edge. Using |Ri| ≥ n− `, we see that

Pr (F ) ≤ `(1− pex)n−`−∆ ≤ ne−(n−`−∆)pex = o(n−2),

where the last inequality holds since pex = ω
(

logn
n−`−∆

)
.

To see (ii) and (iii) it is helpful to think of the algorithm as proceeding in a slightly different, but

equivalent way. First select a random subdigraph G of Dn, where each directed edge of Dn appears

independently in G with probability pex. Now simply run the original algorithm to find a copy of P ,

but this time instead of exposing edges with probability pex, we add the edge if the corresponding

edge is present in G. Clearly this gives an identical distribution on paths which appear as Q.

Now we claim that for all vertices u1, u2, v1, v2 ∈ V (D) with ui 6= vi for i = 1, 2

Pr
(
E−−→u1v1

)
≤ Pr

(
E−−→u2v2

)
+ (8∆ + 12)pex, (3)

and that

Pr (Au1,v1) ≤ Pr (Au2,v2) + (8∆ + 12)pex. (4)

To see this, first note that if both u1 and u2 have the same in and out-neighbourhoods in D,

and v1 and v2 have the same in and out-neighbourhoods in D, then Pr
(
E−−→u1v1

)
= Pr

(
E−−→u2v2

)
and

Pr (Au1,v1) = Pr (Au2,v2). The key observation to proving (3) and (4) is that conditional on a high

probability event, we can assume that this ‘same neighbourhood’ property holds.

Concretely, let

S =
{
z ∈ V (D) : at least one of the edges −→yz,−→zy is not in D for some y ∈ {u1, u2, v1, v2}

}
.

That is, S is the set of vertices which are not in-neighbours or out-neighbours in D of at least one

vertex from {u1, u2, v1, v2}. Now consider the following event

B = “no edge −→yz or −→zy appears in G, where y ∈ {u1, u2, v1, v2} and z ∈ S ∪ {u1, u2, v1, v2}”.

Note that conditional on B, by symmetry of the neighbourhoods of u1, u2, v1 and v2, the path

embedding algorithm is equally likely to expose the −−→u1v1 and the edge −−→u2v2, i.e. Pr
(
E−−→u1v1 |B

)
=

Pr
(
E−−→u2v2 |B

)
. But this gives

Pr
(
E−−→u1v1

)
= Pr

(
E−−→u1v1 |B

)
Pr(B) + Pr

(
E−−→u1v1 |B

c
)

Pr(Bc)
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≤ Pr
(
E−−→u2v2 |B

)
Pr(B) + Pr(Bc)

≤ Pr
(
E−−→u2v2

)
+ Pr(Bc). (5)

Similarly, conditional on B, by symmetry, the pairs {u1, v1} and {u2, v2} are equally likely to be

disjoint from V (Q) \ {x1, x`} and Pr(Au1,v1 |B) = Pr(Au2,v2 |B). Therefore, an identical calculation

to (5) gives

Pr(Au1,v1) ≤ Pr(Au2,v2) + Pr(Bc).

But Pr(Bc) ≤ (8∆ + 12)pex, as each u ∈ V (D) has ≤ ∆ non in-neighbours, ≤ ∆ non out-neighbours

in D and there are at most 12 edges between vertices in {u1, u2, v1, v2} in D. This gives (3) and (4).

Now we can prove (ii). For each −→uv ∈ E(D), let C−→uv denote the event

C−→uv = “−→uv gets exposed during the algorithm and −→uv ∈ E(G)”.

Clearly, we have Pr(C−→uv) = pex × Pr(E−→uv). Let X denote the random variable which counts the

number of edges in G ∩ D which get successfully exposed. Using (3), for any edge −→uv ∈ E(D) we

have

E(X) =
∑

−→xy∈E(D)

Pr(C−→xy)

≥
∑

−→xy∈E(D)

pex ×
(

Pr(E−→uv)− (8∆ + 12)pex
)

≥
(
n(n− 1)−∆n

)
pex ×

(
Pr(E−→uv)− (8∆ + 12)pex

)
= (1− o(1))n2pex ×

(
Pr(E−→uv)− (8∆ + 12)pex

)
. (6)

However we always have X ≤ `, as each successfully exposed edge in G ∩ D completes a round of

the algorithm and the algorithm consists of at most ` rounds. Combined with (6) this gives

Pr(E−→uv) ≤ (1 + o(1))
`

n2pex
+ (8∆ + 12)pex = (1 + o(1))

1

npex
,

since ` ≤ n and pex = o
(
(n∆)−1/2

)
. By applying (3) again, we conclude that Pr(E−→xy) ≤ (1+o(1)) 1

npex
for all distinct x, y ∈ V (D), completing (ii).

Lastly, it is left to prove (iii). Let Y denote the random variable which counts the number of

pairs {u, v} with {u, v} ∩
(
V (Q) \ {x1, x`}

)
= ∅. Note that we always have Y ≤

(
n
2

)
and that if F c

holds then Y =
(
n−`+2

2

)
. Since by (i) we have Pr(F ) = o(n−2), it therefore follows that

E(Y ) ≤ Pr(F )

(
n

2

)
+ Pr(F c)

(
n− `+ 2

2

)
≤ (1 + o(1))

(n− `)2

2
.

But for distinct u, v ∈ V (D), from (4) we have

E(Y ) =
∑

{x,y}∈([n]
2 )

Pr(Ax,y) ≥
(
n

2

)(
Pr(Au,v)− (8∆ + 12)pex

)
.

Rearranging, we obtain Pr(Au,v) ≤ (1 + o(1))
(
n−`
n

)2
+ (8∆ + 12)pex = (1 + o(1))

(
n−`
n

)2
, since

pex � 1
∆

(
n−`
n

)2
, as required.
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3.2 Finding edge disjoint Hamilton cycles in D(n, p)

In this subsection we prove Theorem 1.2. In the proof, it will be useful to assume that p is not

too large at certain points in the argument. We will assume that log3 n/n� p ≤ n−2/3. The general

situation can be reduced to this as follows. If p ≥ n−2/3 let p′ = n−5/6 and k = n5/6p, so that

n1/6 � k ≤ n5/6. Then, after generating D ∼ D(n, p), we further partition D into k subdigraphs

D1, . . . , Dk, where each edge e is assigned to Di with probability 1/k. It is clear that each Di is

distributed as D(n, p′). Therefore, if we prove that the statement of the Theorem holds w.v.h.p

(probability 1− o(1/n)) when log3 n/n� p ≤ n−2/3, by taking a union bound over all the digraphs

D1, . . . , Dk above, we prove it w.h.p. for all p� log3 n/n.

Suppose that p = α3 log3 n/n. Since log3 n/n � p ≤ n−2/3 we have 1 � α ≤ n1/9. Also

let ` = n − n/α log n and ∆ = n1/3. Let 0 < ε, let t = (1 − ε)np = (1 − ε)α3 log3 n and let

C1, . . . , Ct be cycles as given in the statement. Note that we may assume that ε is sufficiently small

(i.e. ε � 1). Set p1 = (1 − ε/2)p and choose p2 so that (1 − p1)(1 − p2) = 1 − p. Note that

p2 = (1 + oε(1))εp/2. Furthermore, let M = α log n and take pex so that (1− pex)M = 1− p1. This

gives pex = (1 + oε(1))α2 log2 n/n. Also, from each Ci we select an oriented subpath Pi of length `,

with orientation σi.

Our general plan is to embed the paths {Pi}i∈[t] into D(n, p1) by repeatedly applying the algorithm

described in the previous section. We will then expose new edges with probability p2, to complete

each copy of Pi into a copy of the cycle Ci. Of course, we ensure that the obtained cycles are edge

disjoint. The embedding scheme proceeds in two stages.

Stage 1: Finding edge disjoint copies of P1, . . . , Pt in D1 ∼ D(n, p1)

Following an idea introduced in [10], in this stage we give a randomized algorithm which w.v.h.p.

finds edge disjoint copies of P1, . . . , Pt in D1 ∼ D(n, p1). To formally describe this process, it

will be helpful to generate D(n, p1) in an alternative manner. To each directed edge e ∈ E(Dn),

associate e with t independent Bernoulli random variables Ce1 , . . . , C
e
t , each coin coming up heads

with probability pex. Then let D1 denote the random subdigraph of Dn where each edge e is included

if some {Cej }j∈[M ] appears heads up (NB: note the appearance of M rather than t here, and that

as M ≤ t this is always well-defined). Each edge e appears independently in D1 with probability

1 − (1 − pex)M = p1, and so D1 is distributed according to D(n, p1). We will gradually expose D1

using the coins {Cei }i∈[t], always maintaining a ‘fresh coin’ for each unused edge. Provided we never

examine more than the first M coins for any e ∈ E(Dn), the above coupling shows that the exposed

random digraph is generated according to D(n, p1) (for more details about this idea, the reader is

referred to [10]).

We now describe the algorithm. To begin, initialize to Round 1 and set counters Me = 1 for all

e ∈ E(Dn). Proceed as follows:

1. In round i we have copies of P1, . . . , Pi−1, denoted Q1, . . . , Qi−1. Set D(i) = Dn \ (∪j<iE(Qj)).

2. Apply the path embedding algorithm from the previous subsection to find a copy of Pi in

D(D(i), pex), which we denote by Qi. If the edge e ∈ E(D(i)) is exposed during this algorithm,

it appears as an edge according to whether the fresh coin CeMe
appears as heads. If this

subroutine fails, declare a failure and terminate the algorithm.

3. If the edge e was exposed during the previous step, increment Me by one. Otherwise leave Me

unchanged.
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4. If i < t then return to 1. in round i+ 1 to find Qi+1.

5. If i = t but some Me > M declare a failure and terminate the algorithm. Otherwise return

Q1, . . . , Qt.

As mentioned above, in the key step 2. of the algorithm we always uses ‘fresh coins’ to expose

edges e ∈ E(D(i)). Furthermore, if the algorithm does not terminate in failure then we have found

Q1, . . . , Qt and Me ≤ M for all e. By our coupling above, this guarantees that the resulting paths

lie in D1 ∼ D(n, p1).

We now analyse the failure probability. Given distinct vertices u, v ∈ V (Dn), consider the follow-

ing random variables:

X−→uv := M−→uv; Yu,v :=
∣∣{i ∈ [t] : {u, v} ∩

(
V (Qi) \ {xi,1, xi,`}

)
= ∅
}∣∣.

We claim that the following three properties hold with probability 1− o(n−1):

(a) The algorithm succeeds in finding copies of P1, . . . , Pt;

(b) X−→uv ≤
p1
pex

for all distinct u, v ∈ V (D);

(c) Yu,v ≤ (1 + ε)× t×
(
n−`
n

)2
for all distinct u, v ∈ V (D).

This will complete Stage 1, as if both (a) and (b) hold then our algorithm did not end in failure.

Indeed, by (a) we have found copies of P1, . . . , Pt and by (b) we have M−→uv = X−→uv ≤
p1
pex
≤M , using

that 1−Mpex ≤ (1− pex)M = 1− p1. (Property (c) will be needed for Stage 2.)

To see (a) note that in round i, each vertex has at most 2 neighbours in each Qj for j < i, and

therefore δ0(D(i)) ≥ n− 2(i− 1) ≥ n− 2t ≥ n− 2∆. Note that

log n

n− `−∆
=

log n

n/α log n− n1/3
≤ 2α log2 n

n
� pex � p ≤ min

{ 1

α2 log2 n(n1/3)
, n−2/3

}
≤ min

{(n− `)2

n2∆
,

1

(n∆)1/2

}
.

Therefore, by Lemma 3.1 (i) the path embedding algorithm succeeds in round i with probability

at least 1 − o(n−2). Therefore, by a union bound, the algorithm succeeds in producing a copy of

P1, . . . , Pt with probability 1− o(n−1).

We now prove (b). Given distinct vertices u, v ∈ V (Dn) we have X−→uv =
∑

i∈[t]X−→uv(i), where

X−→uv(i) denotes the indicator random variable of the event that one of the coins C
−→uv
j is exposed

during round i. Note that from Lemma 3.1 (ii), conditional on any choice of D(i), we have

Pr
(
X−→uv(i) = 1|D(i)

)
≤ (1 + ε/4)

1

npex
.

By Corollary 2.4, we have

Pr

(
X−→uv ≥ (1 + ε/2)

t

npex

)
≤ e−ε2t/(64npex) = o(1/n3).

This holds as t/npex ≥ (1 − ε)np/npex � log n. Therefore, with probability 1 − o(n−1) we have

X−→uv ≤ (1 + ε/2) t
npex

= (1 + ε/2) (1−ε)np
npex

≤ p1
pex

for all −→uv ∈ E(Dn). This proves (b).
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Lastly, (c) is similar to (b). Given distinct u, v ∈ V (Dn) we have Yu,v =
∑

i∈[t] Yu,v(i), where

Yu,v(i) denotes the indicator random variable of the event {u, v} ∩
(
V (Qi) \ {xi,1, xi,`}

)
= ∅. By

Lemma 3.1 (iii), conditional on any choice of D(i), we have

Pr
(
Yu,v(i) = 1|D(i)

)
≤ (1 +

ε

2
)
(n− `

n

)2
.

By Corollary 2.4 we find

Pr

(
Yu,v ≥ (1 + ε)

t(n− `)2

n2

)
≤ e−ε2t(n−`)2/16n2

= o(1/n4).

Here we used that t(n− `)2/n2 � log n. By applying the union bound we obtain (c).

Stage 2: Completing the copies of P1, . . . , Pt to copies of C1, . . . , Ct.

Let us suppose that in Stage 1 we found Q1, . . . , Qt in D1 ∼ D(n, p1), and that property (c)

above holds. In this stage we will prove that with probability 1 − o(1/n) it is possible to use edges

of D2 ∼ D(n, p2) to complete each oriented path Qi to a copy of Ci which is edge disjoint from the

other Cj ’s.

To see this, for each i ∈ [t] let Wi = V (D) \ {xi,2, . . . , xi,`−1} (recall that Qi = xi,1 . . . xi,`). Let

Gi denote the digraph on vertex set Wi consisting of all directed edges which do not lie in the paths

P1, . . . , Pt. Clearly we have δ0(Gi) ≥ |Wi| − 2t ≥ |Wi| − 2∆, which by the choice of the parameters

is at least (1 − 1/ log2 n)|Wi|. Also, by property (c) from Stage 1 for each −→uv ∈ E(Gi) we have

Yu,v ≤ (1 + ε)t(n− `)2/n2.

Now select D2 ∼ D(n, p2), where (recall) p2 = (1 + oε(1))εp. Given D2, we obtain a random

subdigraph Fi of Gi by assigning −→uv ∈ E(D2) with probability 1/Yu,v to some Fi with {u, v} ⊂ V (Wi)

(if Yu,v = 0 then simply discard the edge −→uv). By (c), each edge of Gi appears independently in Fi
with probability

p2

Yu,v
≥ (1 + oε(1))εpn2

(1 + ε)t(n− `)2
≥ εn

2(n− `)2
:= pin.

Therefore the distribution of Fi stochastically dominates that of Hi ∼ D(Gi, pin).

Now to complete the proof, let P ci denote the complementary path to Pi in Ci. Using n − ` =

n/α log n, we find

pin ≥
εα log n

2(n− `)
� log |Wi|

|Wi|
.

Therefore we can apply Lemma 2.5 to obtain that with probability 1 − o(1/n2) for all i ∈ [t], the

digraph Hi (and therefore also Fi) contains a copy of P ci from xi,1 to xi,` in Wi, denoted Qci . But

combining Qi with Qci for each i ∈ [t] we obtain a copy of Ci. Therefore with probability 1− o(1/n),

for all i ∈ [t], the digraph Qi ∪ Fi contains a copy of Ci.

Stage 1 and 2 together prove that if D1 ∼ D(n, p1) and D2 ∼ D(n, p2) then with probability

at least 1 − o(1/n) the digraph D1 ∪ D2 contains edge disjoint copies of C1, . . . , Ct. As D1 ∪ D2

can be coupled as a subgraph of D ∼ D(n, p). This proves that the theorem holds with probability

1 − o(n−1) for log3 n � p � n−2/3, and therefore by the reduction mentioned at the beginning,

w.h.p. for all p� log3 n/n.
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4 Counting

In this section we prove Theorem 1.3.

Proof of Theorem 1.3. First, let us prove the upper bound. Given p and any σ-cycle C, the expected

number of copies of C in D ∼ D(n, p) is at most n!pn. Therefore, using Markov’s inequality, we

obtain that with probability at least 1− 1/K there are at most Kn!pn many such copies. Therefore,

by setting K = log n (say) we obtain that w.h.p. D(n, p) contains at most n!pn log n = (1+o(1))nn!pn

many such copies.

Next, we wish to prove the lower bound. In order to do so, suppose that p = α2(log log n) log n/n

for some function α = α(n) which tends to infinity with n. Let us also set ` = n− n/α(log log n).

Let C be an n-vertex σ-cycle for some σ ∈ {+,−}n. Let ρ ∈ {+,−}` denote the vector given by

ρ(i) = σ(i) for all i ∈ [`] and let P denote the ρ-subpath of C. Let us set p1 = (1− ε)p and p2 = εp,

for fixed small constant ε > 0. We prove that D ∼ D(n, p) contains many copies of C in two stages.

In the first stage we show that w.h.p. D1 ∼ D(n, p1) contains (1 − oε(1))nn!pn copies of P . In the

second stage, we expose a further random digraph D2 ∼ D(n, p2) and show that w.h.p. ‘most’ of the

copies Q of P in D1 extend to a copy of C in D2 ∪Q.

Stage 1: D1 ∼ D(n, p1) contains at least (1− 3ε)nn!pn copies of P w.h.p.

To begin, consider the following way to select a random copy of P , denoted Q = x1 · · ·x`, in some

fixed digraph D on n vertices.

1. In the first round, select a vertex x1 ∈ V (D) uniformly at random and set Q1 := x1.

2. Suppose now that we are in round i, for some 1 ≤ i ≤ ` − 1 and so far we have found

Qi = x1 · · ·xi and aim to extend it to Qi+1, by selecting xi+1. Let Ri denote the σ(i)-

neighbourhood of xi in V (D) \ V (Qi), i.e. Ri = Nσ(i)(xi) ∩
(
V (D) \ V (Qi)

)
.

3. Select a vertex uniformly at random from Ri and set it equal to xi+1 and Qi+1 := Qixi+1. If

no such vertex exists declare a failure and terminate the algorithm. If i < ` − 1, return to 1.

for round i+ 1.

4. If i = `− 1, output Q := Q`.

Running this randomized algorithm results in a distribution on the set of all ρ-paths Q in D. We

will write F(D) for this distribution.

We will now analyse the above algorithm while running on D(n, p1). Select D1 ∼ D(n, p1) and

Q ∼ F(D1). For each i ∈ [`], we will be interested in the following event:

Ei = “|Rj | ≥ (1− ε)(n− i)p1 for all j < i”.

Note that if the algorithm ends in failure, Ec` must occur. We claim that

Pr
D1∼D(n,p1)
Q∼F(D1)

(E`) = 1− o(1). (7)

To see this, we analyse the algorithm by generating D1 in an ‘online fashion’, exposing edges as

we go. Suppose now that we are in round i of the algorithm and have so far found Qi = x1 · · ·xi.
Expose all edges of D1 in direction σ(i) between xi and V (D1)\V (Qi). Note that under this process,
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each edge is exposed at most once, and so can be coupled as a subgraph of D1 ∼ D(n, p1). Clearly

with this process, |Ri| ∼ Bin(n− i, p1). Therefore, by Chernoff’s inequality (see Remark 2.5 in [17]),

we have

Pr
D1∼D(n,p1)
Q∼F(D1)

(
|Ri| < (1− ε)(n− i)p1

∣∣ Qi) ≤ e−2ε2(n−i)p1 ≤ e−2ε2(n−`)p1 = o(n−1).

Here we have used that

ε2(n− `)p1 ≥ ε2(n− `)p/2 ≥ α log n/2� log n.

However, this gives that

Pr
D1∼D(n,p1)
Q∼F(D1)

(Ei+1| Ei) ≥ 1− o(n−1).

In turn this gives (7), since ` ≤ n and

Pr
D1∼D(n,p1)
Q∼F(D1)

(E`) ≥
∏

i∈[`−1]

Pr
D1∼D(n,p1)
Q∼F(D1)

(Ei+1| Ei) ≥
(
1− o(n−1)

)`−1
= 1− o(1).

Now note that (7) shows that if we select D1 ∼ D(n, p1) then w.h.p.

Pr
Q∼F(D1)

(E`) = 1− o(1).

However, for each σ-path Q̃ = x1 · · ·x` in D1 which satisfies E` we have

Pr
Q∼F(D1)

(Q = Q̃) ≤
∏

i∈[`−1]

1

|Ri|
≤

∏
i∈[`−1]

1

(1− ε)(n− i)p1
.

Therefore, letting Q(D1) denote the collection of all σ-paths in D1, which satisfy E`, from (7) we

have

1− o(1) ≤ Pr
Q∼F(D1)

(E`) =
∑

Q̃∈Q(D1)

Pr
Q∼F(D1)

(
Q = Q̃

)
≤ |Q(D1)|

(1− ε)`−1(n)`−1p
`−1
1

.

Rearranging, this gives

|Q(D1)| ≥ (1− ε)n(n)`−1p
`−1
1 ≥ (1− 2ε)n(n)`−1p

`−1 ≥ (1− 3ε)nn!pn.

Here we used that

(n− `+ 1)!pn−`+1 ≤ ((n− `+ 1)p)n−`+1 ≤ (2α log n)n/α log logn+1 = (1 + o(1))n.

Stage 2: Completing ‘most’ copies of P in D1 to a copy of C.

Let P denote the collection of all copies of P in D1. Let P c denote the complement path of P in

C (see notation). Note from the bound in Stage 1, w.h.p. we have |P| ≥ (1 − 3ε)nn!pn. Let us fix

Q ∈ P, which starts at x1 and ends at x`. Select D2 ∼ D(n, p2). We will show that

Pr (Q is contained in a copy of C in Q ∪D2) = 1− o(1). (8)
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To see this, set WQ :=
(
V (D1)\V (Q)

)
∪{x1, x`}, so that |WQ| = n− `+ 2. But it is easy to see that

D2[WQ] ∼ D(n − ` + 2, p2) (perhaps some edges also appear in D1, but this only helps us). Using

that

p2 = εp ≥ εα2(log log n) log n

n
� log n

n− `
,

by Lemma 2.5 we find that D2[WQ] w.h.p. contains a P c path Q2 from x1 to x`. Combined with Q,

this gives a copy of C in Q ∪D2. This gives (8).

We now complete the proof of the theorem. Let Pbad denote the set of Q ∈ P which are not

contained in a copy of C in Q ∪D2. From (8) we have

E(|Pbad|) = o(|P|).

By Markov’s inequality this gives that w.h.p. |Pbad| = o(|P|). Therefore, w.h.p. there are |P\Pbad| =
(1− o(1))|P| ≥ (1− 4ε)nn!pn paths Q which extend to a copy of C in Q∪D2. As each copy of C can

be obtained from at most 2n such paths (rotations along the cycle or flipping all the orientations),

this gives |P \ Pbad|/2n ≥ (1− 5ε)nn!pn copies of C in D1 ∪D2.
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